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A brief description of the model equations and their underlying physical basis is given. The 
space independent problem of a previous paper is extended to include diffusive processes. Trav-
elling wave solutions are introduced, the stability of the steady states and the different bifurca-
tion schemes are discussed. The collapse of the limit cycle, by means of an external stimulation 
or by internal constraints as well as the onset of propagating pulses is considered. Phase portraits 
are discussed in great detail. Correspondence between some approximated versions of the model 
equations and nervous pulse propagation equations is established. Furthermore, some suggestions 
for an experimental proof of the model are made. 

1. Introduction 

In a recently published paper [1] (henceforth 
referred to as I) wre have presented some studies on 
Fröhlich's brain wave model [2], The physical basis 
of this model is the concept of long range coherence 
in biological systems. Starting from the dielectric 
properties of biological materials, Fröhlich [3] has 
shown by a mere application of physical laws that 
such systems may be capable of coherent electric 
vibrations in the 1011 Hz region. The existence of a 
metastable state with a very large electric dipole 
moment and long range selective interactions can 
lead to a collective enzymatic reaction. This reaction 
should take place in the greater membrane of the 
brain [4] if supplied w ith substrate molecules. It can 
create a chemical oscillation of parts of the mem-
brane and a corresponding electric oscillation which 
is coherent over large regions. 

The model has been suggested to explain the 
extraordinarily high sensitivity of biological systems 
to weak electromagnetic signals. In I we have 
studied the set of nonlinear differential equations 
which describes the model. The most relevant result 
is the existence of a limit cycle (sustained oscillation) 
and its collapse when it is exposed to an external 
stimulation of sufficient strength. The limit cycle 
stores the signal energy until the breakdown 
occurs. This reveals the possibility to create a 
response signal (i.e. nerve impulse) even though 
the energy which is available from the external 
stimulation would be too weak to cause this. The 
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onset of a response signal necessitates the introduc-
tion of space dependent variables. In order to 
describe spatial non-homogeneous solutions (i.e. 
propagating pulses) diffusive processes have to be 
added to the other processes. 

In the present paper we discuss the space depen-
dent problem in some detail. The diffusive processes 
are discribed by a simple application of Fick's law 
of diffusion. The prerequisites for the emergence of 
spatio-temporal patterns of organization are open 
systems, nonlinear kinetics and stabilization of 
these patterns sufficiently far away from thermal 
equilibrium. Fröhlich's model displays these prop-
erties (vid. I). 

The bifurcation of the limit cycle, i.e. the in-
stability of the time-periodic steady state solution 
may lead to another solution which is stable in space 
and time. These spatio-temporal dissipative struc-
tures [5] can be of various types. In this paper we 
shall restrict ourselves to travelling wave solutions. 
Other types of solutions (e.g. more complex space-
and time dependent structures, localized structures, 
almost periodic solutions, ...) which can branch off 
from the homogeneous solution by means of specific 
constraints are more difficult to be handled. These 
solutions rather depend on the detailed structure 
of the boundaries than on the bulk properties. 
Work on these subjects has been done in many 
branches of natural sciences such as: chemical 
reactions, shock waves, fluid dynamics, biological 
evolution, ecology and in other fields, e.g. sociology 
[24]. 

An important reason to extend the calculations 
of our previous papers [1, 6, 7] is the increasing 
experimental work which has been done to test the 
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conclusions which have been drawn from Fröhlich's 
suggestions. An interpretation of the known 
experimental results by means of some simple but 
convincing model calculations provides considerable 
evidence for Fröhlich's rather speculative sugges-
tions (vid. I). 

We start with a brief description of the model 
equations and their extension to the nonhomo-
geneous problem. Travelling wave solutions are 
then introduced. They allow to transform the set 
of nonlinear parabolic differential equations into a 
set of ordinary differential equations. Subsequently 
wre study the stability of the steady states and the 
different bifurcation schemes. Special attention is 
given to the existence of periodic solutions. The 
resulting phase portraits are discussed in great 
detail. They show the dynamic behaviour of the 
model equations, in particular the different types 
of travelling waves that can exist. 

Finally we briefly comment on the relations which 
exist between nervous pulse propagation equations 
and our approximated equations. 

2. Limit Cycle and Travelling Waves 

In paper I we have studied the steady state 
behaviour of the following set of equations 

dtv = y a + ocA a v 

+ {c2e~r2^-d2)v + F , (2.1) 

dto = — ß v — y.Aov . (2.2) 

The first two terms on the r.h.s. of both equations 
describe the nonlinear collective enzymatic reaction. 
The third term of Eq. (2.1) is the "dielectric" term. 
It describes the competition between the system's 
tendency to become ferroelectric and inherent 
losses due to "electrical" resistances. F is the 
external stimulation, v and a are the excess con-
centrations of activated enzyme and substrate 
molecules respectively beyond their equilibrium 
values N — v-\- y/cuA and S = c+ (ßl<xA). a, ß and 
y are positive parameters and A is the concentration 
of unexcited enzyme molecules. 

Equations (2.1) and (2.2) exhibit a limit cycle 
oscillation if the conditions 

ß y > aAF , (2.3) 

419 

and 
(C2 _ d2 _ xAF/y)2 < 4 ( ß y - a AF) (2.5) 

are fulfilled. 
In order to look for space dependent solutions a 

diffusive process must be incorporated in Eqs. (2.1) 
and (2.2). We take the axial direction x to be the 
only important space dimension and apply Fick's 
law of diffusion. However, we do not add a "diffu-
sive" term in Equation (2.2). On one hand we make 
this restriction for mathematical convenience but 
also to account for the fact that a partially plays 
the role of a pool-variable (i.e. a slow variable in 
our case). This has the effect of replacing Eqs. (2.1) 
and (2.2) by 

dtv = y a + ix A a v -f- (c2 e~r2v2 — d2) v 

+ F+dxxv, (2.6) 

dta = - ßv - xAay (2.7) 

(the diffusion constant D is incorporated in the 
variable x, x = j/Z) x). 

Assuming the membrane to be of infinite length, 
we study Eqs. (2.6) and (2.7) on the planar quadrant 
z ^ O , t^O. Equations (2.6) is classified as a non-
linear parabolic partial differential equation of the 
general form 

dxxv=dtv + f(v), (2.8) 

where f(v) is nonlinear. This equation is known to 
have travelling wave solutions. Such a behaviour is 
not possible if f(v) is linear (vid. e.g. the heat 
equation). Equation (2.8) is supplemented by a 
kinetic equation for the additional variable a. We 
expect this addition to give rise to a significant new 
behaviour. As stated in the introduction we will 
restrict ourselves to travelling wave solutions of 
Eqs. (2.6) and (2.7). A solution of this type only 
depends on the variable s = x + Ot, where 6 is the 
wave velocity; it plays the role of a parameter here. 
We substitute 

v = y)(x + d t) = yj (s), 

a = cp (x + 61) = cp (s) 

in Eqs. (2.6) and (2.7), respectively. 

The transformed equations read 
0dsy) = yep -f ixAxpcp + F 

+ (c2e~r^2 -d2)rp + dssrp, (2.9) 
c2 - d2 > clAFly , (2.4) 0 £scp = — ßip — y.Axpcp . (2.10) 
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Introducing = the Eqs. (2.9) and (2.10) can 
be written as a first order system 

ZSV> = X, (2.11) 

0.sX = ®X — 7<P — ( C 2 e _ r v — d2) rp — 
(2.12) — oAipcp — F, 

0 ds(p = — ßxp — oAtpcp 

with the steady states (equil. points): 

(Vo 
SS 1: | (po = - ß/oiA 

\ Xo = 0 

(2.13) 

and 

SS 2: 
if o = 0 
(po = - F\y 
Xo = 0 

We expand the nonlinearities of Eqs. (2.11) to (2.13) 
in a Taylor series around the two steady states. The 
linearized equations then determine the stability 
of the steady state solution near this critical point 
[8]. For the SS 1 we get the characteristic equation 

P - A2(0 - a A rpo/0) + A(c2( 1 - 2T2vo2) 
. _ dz _ ß _ aAy>0) 

and for the SS 2 

d2 - ß)j& = 0 (2.14) 

A3 - QI2 + A(c2 - d2 - a A F j y ) 
-{ßy-OLÄF)j& = 0. (2.15) 

3. Stability of Steady State 2 

The eigenvalues of Eq. (2.15) are real or complex, 
depending on the parameters and on the external 
stimulation. If the conditions (2.3) and (2.4) are 
fulfilled, we have an unstable node (UN) if Eq. (2.15) 
has three positive real roots and an unstable focus 
(UF) if there is a positive real root and complex 
roots with positive real parts. For c2 — d2 — oAF/ 
y = 0 and ßy>o.AF (i.e. c2 — d2 — ß< 0) we have 
the bifurcation scheme 

U F—> S P 
Fc 

(3.1) 

with 

[under these conditions the critical point is an un-
stable focus, which follows from a calculation of 
the discriminant of Equations (2.15)]. For 

c2 — d2 — a. A Fly > 0 and ßy = o.AF 

(i.e. c2 — d2 — ß>0) we have the scheme 
(3.2) 

with 

U F —> S P Fi 

F 2 = ßyloA 

If one of the conditions (2.3) or (2.4) or both are 
not valid, the real parts of the eigenvalues do not 
have the same sign. All these cases exhibit a saddle 
point behaviour. The existence of a negative real 
eigenvalue together with a complex root with 
negative real parts is ruled out by the Hurwitz 
criterion [9]. An asymptotically stable steady state 
(i.e. stable node or stable focus) does not exist. 

If we compare the stability conditions for the 
SS 2 of the space independent problem (vid. I) with 
those of the space dependent one, we can derive 
the following scheme: 

stable focus (stable node) 
in I saddle point, 
saddle point in I saddle point, 
unstable focus (unstable node) 
in I unstable focus . 

The saddle point belongs to a one-dimensional 
family of solutions w hich tend to the steady state 
for s -> + oo (i.e. stable) and to a two-dimensional 
family of solutions which tend to the steady state 
for —oo (i.e. unstable). This holds for 

a AF 
c2 — d2 — > 0 ; ßy-oAF<0 

- d 2 -
:AF 

y 
< 0 ; ßy — o.AF < 0. 

The reversed situation, i.e. two stable and one un-
stable families of solutions, is given when 

o.AF 
c2 — d2 — < 0 : 

y 
ßy - o.AF > 0. 

Fe = y(c2 — d2)/oA 

The most interesting problem concerns the limit 
cycle oscillation around the unstable focus in the 
homogeneous case. This sustained oscillation can 
only exist if at least the conditions (2.3) and (2.4) 
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are valid. We apply a generalized Hopf bifurcation 
theorem [9] to Equation (2.15). This equation has 
two simple, complex conjugate nonzero eigenvalues 
Ai/2. They cross the imaginary axis if 

a AFdy = {ßy - 02{c2 - d2))j{y - 02). 
(3.3) 

Furthermore we can calculate the "speed" with 
which Ai and A2 bifurcate: 

ZzAFiy Re (Ai/2) I F=Fc = \ (y2 — 04)/ 
• ((c2 — d2 — ß)y — 6 03(y — O2)). (3.4) 

For the real root one gets A3 = 0 > 0. For y =}= 0 
the conditions of the generalized Hopf bifurcation 

" e 2 / r 

UF SP 
- + + 

SP 
+ - \ CXAF/7T 

= 1 

Fig. 1. Stability of steady state 2 (SS 2) in dependence of 
the external stimulation F and of the travelling wave 
velocity 0 The solid line represents condition (3.3), 6 — ßj 
(c2 — d2). The + and — sign correspond to a positive and 
a negative eigenvalue, respectively; + or = refer to the 
sign of the real part of a complex eigenvalue. (SP = saddle 
point, UF = unstable focus.) 
a) c2 - d2 - ß < 0; b) c2 - d2 - ß > 0. 

theorem are fulfilled, i.e. periodic solutions do exist. 
The existence of only one positive real root follows 
from a calculation of the so-called Sturm's func-
tions. For 

02/y < ß{c2 - d2)~ 1 (3.5) 

there exists a region where the steady state solution 
is a saddle point. If we restrict ourselves to the 
most promising transition in the space-independent 
case [vid. Equation (1,4.13)]: 

U F + S L C j > S F (3.6) 

we find from condition (2.4) and Eq. (3.3) 
02ly ^ 1 . (3.7) 

We thus have a lower limit for the velocity of the 
travelling wave 

0min = VV • 

An analysis of the phase plane shows that there 
are no nonconstant bounded solutions, if the criti-
cal point is a saddle point. Accordingly, no stable 
travelling wave solutions can exist. The situation, 
where SS 2 is an unstable focus which is surrounded 
by a limit cycle, will be discussed in more detail 
after having studied the SS 1. A graphic represen-
tation of the conditions (3.3) is given in Figure 1. 

4. Stability of Steady State 1 

The critical value \po is calculated from G (yo, F) 
— 0, with 

G(y>0, F) = [c2e~r^ - d2 - ß)Wo 

-ßy/xA + F. (4.1) 

This equation has one real solution for 
c2 - d2 - ß < 0 

and three roots in the opposite case. 
The characteristic equation [Eq. (2.14)] can be 

separated in two parts: 

Ai = — ct.Ay)ol0, (4.2) 

A2 - 01 + c 2 ( l - 2T2ipo2) 
. e-r*vo\_ d2 _ ß = o. (4.3) 

The latter equation is rewritten in the form 

A 2 - < 9 A - (dFVo)-1 = 0 (4.4) 

with derived from Equation (4.1). It allows a 
geometrical interpretation of the stability behaviour 
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since the sign of Cp xpo can be taken from the xpo — F-
diagram (vid. Figure 2). We get critical points of 
different types. Both, for ipo<0 (i.e. A i > 0 ) , 
öf VO > 0, and for xpo > 0 (i.e. Ai < 0 ) , Y>o< 0 the 
critical points are of saddle point type, xpo < 0, 
c)p xp0 < lead to a unstable focus or an unstable 
node. The additional condition for the steady state 
to be a focus is 0 2 + 4(c!Jpyo)~1 < 0 . No asymp-
totically stable solutions can exist. This follows 
from the Hurwitz criterion [9]. The correlation 
which exists between the homogeneous and inhomo-
geneous case is the same as for steady state 2. Both 
results are drawn in Figure 2. 

A bifurcation to a periodic solution is not pos-
sible, since the necessary conditions of a generalized 
Hopf bifurcation theorem are not fulfilled. The 

necessary condition for two purely imaginary roots 
reads 

O2(<xAxp0 + (cVyo)-1) = (<*A xpo)2. (4.5) 

This is the same form as Eq. (4.4) if one replaces 
<xAxpo by OX. Hence the solutions of Eq. (4.5) and 
of Eq. (4.4) are not independent from each other, i.e. 

(ccA ipo)l, 2 = 6^2,3-

But since the eigenvalues ^2,3 are purely imaginary, 
xpo also has to be purely imaginary. However, an 
imaginary steady state solution xpo is not relevant. 
The complete stability behaviour of the steady 
states 1 and 2 is shown in Figure 3. 

As seen, the region where an unstable node or an 
unstable focus exists is rather restricted. Further-

Fig. 3. Steady state solutions yo as a function of the ex-
ternal and internal parameters. The folded surface repre-

-) sents SS 1 and the plane one SS 2 (same notation as in 
l\ I o Fig. 2), Q2/y > ßl(c2 - d2). 

more, only for SS 2 periodic solutions exist. How-
ever, a further analysis is required to determine the 
stability of the periodic solution and the direction 
of bifurcation. The theory of one-parameter trans-
formation groups seems to be an appropriate and 
possible method [10]. 

5. Phase Portrait 

The phase portrait of Eqs. (2.11) to (2.13) changes 
qualitatively when relevant parameter values cross 
the locus of bifurcation in their parameter space. 
Since these loci are known, we can discuss in prin-
ciple the complete phase portraits for any value of 
external constraints. This analysis exhibits the pos-
sible kinds of travelling waves. 

O C A F / 7 T 

b 

Fig. 2. Steady state solutions of Eqs. (2.9) and (2.10): 
a) c2 - d2 - ß < 0; b) c2 — d2 — ß > 0. 
(SP = saddle point, SLC = stable limit cycle, UF = un-
stable focus, UN = unstable node.) 

oCAF/zr < 
CXAF/T 
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Unfortunately the phase space of our dynamic 
system is three dimensional. In order to keep the 
investigations in a reasonable limit and for the 
clarity of the portraits we confine ourselves to an 
analysis in two dimensions, i.e. in the phase plane. 
This has the effect that one studies a system of 
lower dimension which now depends on an addi-
tional parameter cp = cpc. We restrict ourselves to 
the % — y>-plane. This limitation seems to be 
reasonable since the variable cp is a slow variable 
and plays the role of a pool-variable (<pc). However, 
we must be aware that only for <pc = cpo= — ß/ctA 
(i.e. SS 1) we have ds(p = 0. Then all the trajectories 
lie entirely in the % — ̂ -plane. For (pc=^ — ß/cnA 
the trajectories have a component in the 99-direction. 
A similar consideration has been undertaken in I, 
where we have discussed the "energy-function". 

We now discuss the phase portrait in more 
detail [vid. Eqs. (2.11) to (2.13)] 

dsy> = x , (5.1) 

dsx = 0 x - f ( y > ) (5.2) 

with 
f{xp) = (c2e~nv2 -d2)xp 

+ cnA<pcxp + ycpc + F . (5.3) 

The slope of the trajectories 

dvx = r H ® x - f ( v > ) ) (5.4) 

and of the separatrices [11] 

mi,2 = i(0 ± (0 2 _ 4 ö wf{xp) U J 1 / 2 ) (5.5) 

A X . - f ( T t ) 

yields the essential features of the phase plane 
portraits. The critical points are given as the points 
of the intersection of % = 0 and f(xp) = 0. 

1. <pc=- F\y 

The nonlinear function f(xp), 

f{xp) = (c2 e~r2v'2 -D2- Y-1 OLAF) xp (5.6) 

simulates the existence of three steady states. But 
only for ipo — 0 we have 0)599 = 0. Then the two 
quasi-steady states are (vid. Fig. 4) 

dZ + lAF/y ( 5 ' 7 ) 

Fig. 4. Phase plain for SS 2. The arrows indicate the slope 
and the direction of the trajectories; dxy> = 00 for % = 0. 
j(xji) = 0 yields the SS 2 and the two quasi steady states. 

2. cpc = - ß/zA 

The nonlinear function j(xp), which is given by 
f(ip) = (c2 e- r 2v2 - d* - ß) xp - ßy/ccA + F (5.8) 

is neither an even nor an odd function of xp (vid. 
Figure 5). The phase portrait for 0 = 0 is drawn 
in Figure 6. 

A closed orbit corresponds to a standing pulse 
(vid. Fig. 6c), a loop to a standing periodic wave 

which, since xpo is real, yields c2 > d2 -\-<x.AF/y. Then 
a bounded solution exists. 

Fig. 5. Function f(xp) (vid. Eq . (5.8)) in dependence o f the 
external stimulation F for c2 — d2 — ß > 0. 
1 . 0 ^F <FX, 
2. FI<F< F2, 
3. F =F2 = ßy/xA, 
4. F2<F <F3, 
5. F3 < F, 
f(v) = 0 are the S S I . 
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% 1 » 
Fig. 6. Phase plain diagrams of SS 1 if c 2 — d2 — ß > 0 and 
0 = 0+. The singular points y i and are saddle points, 
y>2 is an unstable focus (UF) in case b and d and a centre (C) 
in case c. The + and — signs refer to a positive and a 
negative slope o f the trajectories. Figures a to e correspond 
to the graphs 1 to 5 o f Fig. 5, respectively. 

(vid. Figure 6b, d). The stability of the loop 
reflects the stability of the standing periodic wave 
in this loop [12]. For both cases (i.e. Fig. 6b, d) 
we have orbital stability for the standing periodic 
wave. This behaviour results from the fact that for 
0 = 0 Eqs. (5.1) and (5.2) form a Hamiltonian 
system with 

It should be stressed that, in the xp — ̂ -plane, the 
internal steady state of the triplet is an unstable 
node or an unstable focus, i.e. the eigenvalues are 
positive. If, in addition, the time dependence of op 
is taken into account, the additional eigenvalue is 
negative for xpo > 0 and positive for xpo < 0. Thus, 
in three dimensions we have for y o > 0 a saddle 
point behaviour, whereas for xpo <.0 the steady 
state is an unstable focus (vid. Figure 2). A saddle 
point type of behaviour is not possible in the two 
dimensional case (vid. Figure 6). Such a different 
behaviour in the two and three dimensional case 
is a typical one. A critical point that seems absolute-
ly unstable in three dimensions can exhibit a rather 
different behaviour if it is not only analyzed as an 
isolated singular point. Examples for this behaviour 
are homoclinic and heteroclinic orbits. In the latter 
case at least one additional critical point must 
exist. 

For 0=1=0, i.e. the travelling wave case, the 
position of the steady states is not changed against 
the situation 0 = 0. However, the slope of the 
trajectories and of the separatrices is altered, and 
thus the stability behaviour depends on 0 . The 
direction of these changes is determined by Eqs. 
(5.4) and (5.5), e.g. a positive slope of the sepa-
ratrices increases and vice versa. 

The transition from the single to the triple 
steady state 1 with increasing F is influenced by 
the periodic oscillation around the steady state 2. 
Details are only obvious if the phase plane portrait 
in three dimensions is considered. The threefold 
steady state which is defined by 

{zo = 0, xpo, 1 < xpo,2 < yo, 3, <?o = ~ ßlv-A)' 

exhibits only a periodic oscillation around xpo,2 with 
xpo,\ a n d yo,3 in the exterior of the cycle. This has 
been shown by simple phase plane arguments. For 
0 =j= 0 Eqs. (5.1) and (5.2) constitute no longer a 
Hamiltonian system. The Hamilton function 
H{xp, x) of Eq. (5.9) must be supplemented by an 
additional term R, which is inprinciple unknown. 
The dynamic behaviour for 0 being small is shown 
in Figure 7. The trajectories, which start at the 
same critical points for 0 = 0 and 0 4= 0, differ in 
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Fig. 7. Phase plain diagram of SS 1 for ßy/ctA — F (vid. 
Figures 6 c). The dashed lines show the changes in the slope 
o f the trajectories for 0 + 0. 

their paths. Closed paths of the Hamiltonian system 
are opened, it is said that H "increases on orbits". 
This increase corresponds to a negative friction, a 
behaviour which becomes obvious if the two first 
order Eqs. (5.1) and (5.2) are written as a second 
order differential equation. It reads 

Ö « V - 0 0 « V + /(V) = O- (5.10) 

The influence of G on the complete phase portrait 
is shown in Fig. 8 for yßl<x.A > F. 

6. Discussion of the Phase Portraits 

The idea of the collapse of the limit cycle 
oscillation and a subsequent onset of propagating 
pulses has been the starting point of the present 
work. Therefore we restrict ourselves to a discussion 
of the phase portraits for ßy/y.A>F. The other 
case, ßy/ixA <F, does not show any stable oscillat-
ing or nonoscillating solutions. 

A travelling wave (ip(s), <p(s), x(s)) is a non-
constant solution of Eqs. (2.9) and (2.10). The 
critical points (i.e. steady states) of Eqs. (2.11) to 
(2.13) are the identical constant solutions. A periodic 
solution of the latter equations corresponds to a 
periodic travelling wave of Eqs. (2.9) and (2.10). 
Travelling waves can be roughly classified into three 
groups: periodic waves — solitary waves and 
transition waves. 

The most interesting problem for our purpose is 
the response of the system to an external stimulation 
which exceeds its critical value Fc. This response 
may create a pulse travelling along the membrane. 

The answer to this problem generally relies on a 
solution of the partial differential equations (Eqs. 
(2.9) and (2.10)). It should include the type, shape, 

Fig. 8. Phase plain diagram of SS 1 for Fx < F < F2 for 
different values of wave velocity 0 if c2 — d2— ß>0. 
a) 0 = 0 (vid. Fig. 6 b ) ; 
b) to d) correspond to increasing values of 0 . The dashed 

lines ( ) represent d s ^ = 0 ; for % = 0 we will have 
dsy) = 0 (same notation as in Figs. 2 and 6). 
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velocity and stability of the travelling wave. A 
complete mathematical formulation leads to a 
boundary value problem with data given at x — 
and specified for all times together with an appro-
priate initial stimulus at t — 0. This combined 
boundary and initial value problem can only be 
solved in a numerical way. There the temporal and 
the spatial stability are determined by the initial 
and the boundary value problem, respectively. 

Up to now we have not succeeded in solving the 
complete problem. Hence we will restrict ourselves 
to results which one can deduce from a phase plane 
analysis. The trajectories describe the shape of the 
travelling front from one singular point to another 
one. 

a) Unique steady state 1 

We start with a discussion of the results which 
we have found for c2 — d2 — ß<0, i.e. if the SS 1 
is a single one. We may represent this case by the 
scheme (vid. Table 1). 

It is rather instructive to have a closer look at 
the region F ^Fc. The limit cycle collapse at 
F Fc coincides with the breakdown of the limit 
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cycle in the space independent problem: Con-
sequently we have the bifurcation schemes: 

space independent problem 

stable oscillating solution stable nonoscil-
lating solution, 

space dependent problem 

stable oscillating solution f propagating pulse 
in space and time. 

The energy which is stored in the limit cycle 
oscillation by chemical reactions and external 
stimulation, is transferred into the propagating 
signal. The critical value for the external stimulation 

FQ = y (c2 — d2)/c(.A . (6.1) 

We note that this is determined by the parameters 
of the kinetic equations (Eqs. (2.1) and (2.2)). 
y/y.A — No stems from the substrate-enzyme 
reaction. A7o is that part of the excited enzyme 
concentration whose dipole moment is screened by 
the surrounding water molecules and ions and which 
therefore does not contribute to the ferroelectric 

c 2 - d 2 - / 3 < 0 

SS1 

SS2 

t O — F ̂  Fc II Fc cF < F 2 

" I F 

III F. 

Table. 1. Bifurcationscheme 
for the single SS 1 (i.e. c2 

- d 2 - ß < 0) and the SS 2, 
if 02jy > ß/(c2 — d2). Tra-
jectories which start f rom 
the unstable saddle point 
and the unstable focus, ap-
proach the stable limit 
cycle with velocity 0 . The 
shape o f these travelling 
fronts depends on the pa-
rameters o f the system. For 
increasing external stimu-
lation F (F> Fc) there are 
bifurcations to other steady 
states, thus creating other 
types o f travelling waves. 
The most important regions 
are those with F <FC and 
FC<F <F2 with the limit 
cycle collapse at F -»Fc 

(vid. Figure 2). Fc = y 
(c2 -d2)/(xA; F2 = ßylcuA. 
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behaviour (vid. I). Its value increases if there is a 
large input of substrate molecules e.g. through 
autocatalytie production or if there is a small 
concentration of weak polar enzyme molecules (A), 
a represents the strength of the nonlinear enzyme-
substrate reaction. For increasing strength we have 
a decreasing concentration of screened excited 
enzyme molecules, Ao. Small values of ATo in turn 
reduce the threshold value Fc for the external 
stimulation to achieve the limit cycle collapse. The 
second essential parameter which determines F c is 
c2 — d2. This term represents the competition 
between the ferroelectric tendencies of the un-
screened part of the highly polar enzyme molecules 
and the dielectric losses. A large sensitivity of the 
biological system to external stimulation requires 
a small critical value Fc which can be achieved 
by small values either of Ao or of c2 — d2. The last 
condition requires a soft ferroelectric material 
which seems to be present in biological systems. 
Furthermore, since c2 — d2<ß is required, we 
should have a large decay rate ß for the excited 
enzyme molecules. This means that the chemical 
damping should dominate over the dielectric terms 
(e.g. over the ferroelectric tendencies). Since the 
collapse of the limit cycle is determined by all 
parameters of the kinetic equations there is a wide 
variability for experimental investigations, whence 
it should not be too difficult to decide whether the 
model may serve as a starting point to describe the 
function of the Greater Membrane. 

Above Fe, a detailed discussion with respect to 
the existence of a homoclinic or heteroclinic orbit 
is necessary. Only then the form of the pulse which 
propagates along the membrane can be given. 
However, we may state that there is a bifurcation 
to a saddle point which contains two stable and one 
unstable family of solutions. This behaviour is 
valid in the region Fc < F < F2 and one can show 
that the travelling wave has a shape preserving 
tendency when it propagates. 

The critical value F c of the external stimulation 
has a certain value for fixed internal parameters. 
However, changes of these parameters by internal 
or external means may lead to a sequence of several 
critical values Fc. Large values of Fc may thus 
perhaps play the role of the threshold which is 
known from nerve excitation. This behaviour 
seems to manifest the close connection which 
exists between brain waves (i.e. electroencephalo-

graphic oscillation) nad nerve action [21]. Further-
more, the existence of different types of travelling 
and standing waves indicates that there are changes 
in both, the amplitude and frequency of the brain 
wave oscillations, if Fc is changed. The emergence 
of spatial and spatio-temporal behaviour by means 
of the bifurcation of the homogeneous state at F c 

can thus be caused by critical changes of the 
internal parameters. It seems possible that F c is 
lowered to a value which is comparable with 
always existing internal fields. Without an external 
stimulation dramatic changes of behaviour may 
then occur. The resulting internally caused in-
stabilities may give rise to a collapse of the limit 
cycle oscillation. Quite new phenomena may result, 
e.g. an elliptic seizure. The latter is a coherent 
oscillation with a large amplitude which may be 
seen by electroencephalographic activity [22], 
A more detailed investigation of this problem which 
should include the correlation between individual 
units of nerve cells in the brain and the EEG 
activity, is beyond the scope of this work. 

b) Threefold steady state 1 

The situation with c2 — d2 — ß> 0, where the 
SS 1 is a threefold one, is more complicated. We 
can draw the scheme (vid. Table 2): 

For 0 = 0 we have a complete separation of the 
phase space for the SS 1 from that of the SS 2. 
Besides one looses the time dependence of the 
variables ip, % and cp. We do not want to discuss 
this situation in more detail. Different types of 
travelling waves between the split SS 1 solutions 
are shown in Figure 9. A possible type of transitions 
from SS 1 to SS 2 is drawn in Figure 10. A more 
detailed phase analysis which includes % — cp and 
cp — s diagrams and the different types of transitions 
from SS 1 to SS 2 is postponed to a later study. 

For F > F3 no stable space dependent solution 
exists. The behaviour of the system is the same as 
that for c2 — d2 < ß. A pulse propagates from the 
region where the stable limit cycle has collapsed. 
After a recreation period, the limit cycle can be 
built up again. Details of these processes require a 
complete calculation of the whole dynamic be-
haviour of the system. This should include the size 
of the reacting (i.e. oscillating) and of the pulse 
propagating regions of the Greater Membrane and 
is beyond the scope of the present paper. Finally 
it should be stressed that the limit cycle which 



424 Fr. Kaiser • Limit Cycle Collapse and Travelling Waves 428 

c2-d2-ß>0 

ss1 

ss2 

i 0 i f < f-| i i f 1 < f < f 2 i i i f 2 < f < f 3 i v f > f 3 

T T ¥ IF 
^ 

sp 
> 

sp f 2 sp f 3 sp 

fig.9c | transition wave 

— > sp F2 uf 
1tt 

F2 

fig.9c transition 
Iwave 

saddle y ? 

point f 1 sp 
If, 

F

2 
sp 

I 
completely 

I ' 
unstable 

travelling 

. front 

travelling 

front 

stable 
limit s l c 
cycle 

F

1 

travelling 

front 
travel. F2) 
front 

unstable 

focus 
F

1 
UF 

sp 
> ~ ~ ] 

sp f sp 
3 

Table 2. Bifurcation scheme 
for the threefold SS 1 (i.e. 
c2 — d2 — ß>0) and the 
SS 2, if 02/y> ß/c2 — d2). 
There are four different reg-
ions o f behaviour (vid. Fig -
ure 2) : F < Fi, Ft < F < F2, 
F2<F<F3 and F3<F. 
The behaviour o f region I 
corresponds to that o f region 
I in Table 1. In region I I 
there are trajectories which 
connect singular solutions 
o f SS 1 (vid. Fig. 9 c) or the 
limit cycle o f SS 2. Reg ions 
I I I and I V lead to different 
travelling waves, the details 
o f which are unknown. 

represents a stable oscillation in space and time, 
may be viewed as a standing periodic wave. The 
existence of the limit cycle is related with the 
condition 

02\y > ß/(c2 - d2) (0.2) 

which follows from Equation (3.3). This restriction 
seems plausible since a travelling wave can only 
exist if its velocity is large enough to overcompen-
sate the diffusion. Furthermore, the diffusion 
constant D is incorporated in 0, since the real 
travelling wave speed is 0 = j D 0. 

7. Approximations 

We will briefly comment on the relations which 
exist between nervous pulse propagation equations 

and our equations, if the latter are simplified. The 
nonlinear term y.Aav of Eq. (2.1) is neglected, 
whereas the nonlinearitv of Eq. (2.2) is replaced by 
— ea. This approximation is an appropriate one 
for small values of v and a and for y.A<g.y, ß, 
c2 — d2. The same approximations have been 
performed in I, where they turned out to exhibit a 
rather good description of the steady state be-
haviour. Furthermore, we expand the exponential 
of Equation (2.1). Then we end up with a Bonhoefer-
Van der Pol/Fitz-Hugh system, which has been 
discussed in I (vid. Eqs. (I 5.6) and (I 5.7)). In the 
space dependent case these equations read 

M = (7-1) 
= @ x — y <P — (ß2 — d2) ip 

+ c2r2y2-F, (7.2) 
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I t 

s = x + e t 

n 

0 — 

s = x + 0 t 

o - -
3ta 

S = x + 6 t 
c 

Fig. 9. Travelling waves within SS 1 for different values o f 
0 (01 < ©2 < ©3). 
a) For &i an oscillating nonconstant solution unwinds from 

the unstable focus rpo and tends to rps (vid. Figures 8 b ) ; 
b) for @2 there is a transition from ^3 to y>i (transition 

wave) and an oscillating transition from y>2 to (vid. 
Figure 8 c ) ; 

c) for ©3 we have an upward transition from y>2 to and 
a downward one from rpo to y i (vid. Figure 8d) . 

f 
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0ds(p = -ßxp-e(p. (7.3) 

The steady state for these equations is given by 

SS 3 : £o = 0 , cp0=-(ßje)xpQ. 

where xpo is the solution of 
xp0{c2 - d2 - ßy/e) - r 2 c2 xpo3 + F = 0 . (7 .4 ) 

It is a single {c2 —d2 — ßy/e < 0) or a threefold one 
(c2 — d2 — ßy/e > 0). 

The stability of the steady state is calculated 
from 

A3 - k2(0 - e/0) -X{e-ßy\e + (ö^)-1) 
- c / 0 ( dFy>)~1 = 0, (7.5) 

where dpxp can be derived from Equation (7.4). The 
results are drawn in Figure 11. 

S = X + £ t 

Fi g. 10. Transition wave from SS 1 (<p1 = — ß{aA) to SS 2 
(<p2 = _ Fjy) for 0 < F < F2. 
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Fig. 11. Stability of SS 3 (Eqs. (7 1) to (7.3)) in dependence 
of the steady state solution if0 and of the travelling wave 
velocity 0 The solid line represents the condition (3.3), if 
the latter is applied to the approximated equations, 
a) c2-d2 - ßy/e < 0 ; b) c2 - d2 - ßy/e > 0, 
there is one steady state ipo.i (i — 1, 2, 3) in each o f the 
three regions (I, I I , I II ) . 
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Equations (7.1) to (7.3) have the same structure 
as the wellknown Fitz-Hugh-Naguino equations 
[14]. These equations have been established to give 
a simpler description of the Hodgkin-Huxley 
equations [15]. The latter describe a model for the 
"propagated action potential", in which a signal is 
created by means of an external stimulation and 
moves along the axon without loss of its waveform. 

The behaviour of the Fitz-Hugh-Nagumo equa-
tions has been investigated by many authors. Since 
these equations are so closely related to our own 
ones, it is worth citing those results which also apply 
to our system. 

Hasting [16] proofs the existence of homoclinic 
orbits for 0 = 0\, 0 2 and the possibility of periodic 
travelling waves for 0 i < 0 < 0 2 . Single pulses 
and periodic travelling waves can exist, if a more 
generalized system is considered (Rinzel [17]). 
Spatial and temporal stability has been discussed 
[17, 20] as well as the necessary conditions for the 
threshold and the onset of pulses. A rather detailed 
calculation which includes the direction of bifurca-
tion and the existence of periodic solutions has been 
given for the space independent problem in [19, 23]. 

The results of these articles are applicable to the 
Equations (7.1) to (7.3). But, without a detailed 
calculation of the whole time and space dependent 
problem, including the boundaries of the membrane 
system, it is not possible to decide which one of the 
solutions is relevant. However, since our results 
exhibit pulse propagation, single and repeated 
pulses (wave trains) and threshold behaviour, which 
is wanted for biological ystems, our equations may 
be expected to have significance for biological 
purposes. 

Conclusion 

The brain wave model has been suggested by 
Fröhlich in order to give an explanation of the 
extraordinary high sensitivity of certain biological 
systems to weak electromagnetic waves. This 
experimental result seems to be in an appreciable 
agreement with our results. 

The resting state of the nonlinear system has 
turned out to be an oscillating one (i.e. a limit 
cycle). External electrical or chemical constraints 
can cause this limit cycle to collapse. The results 
reported here shoAv that after the breakdown 
propagating pulses are created. Depending on the 

internal parameters of the system on one hand, and 
on the external stimulation on the other hand, 
several types of travelling waves are possible. Their 
speed, waveform and stability are governed both, 
by the size of the membrane system itself and the 
internal parameters. 

The extreme low frequency oscillations (10 Hz 
region) thus make the Greater Membrane respond 
to very weak signals. Furthermore, this oscillating 
resting state rather than a static (nonoscillating) 
one, forms the nonequilibrium energy source for 
the onset of propagating pulses. The entire brain 
wTave model is based on a state far from thermal 
equilibrium. The latter is stabilized by the long 
range coherent behaviour of the substrate-enzyme 
system. From this point of view it is rather obvious 
that there are relations between neuronal activities 
(i.e. nerve pulses) and brain waves (i.e. low 
frequency oscillations) [21]. The close connection 
which exists at least for the approximated brain 
wave equations and the Fitz-Hugh Bonhoeffer and 
Fitz-Hugh Nagumo equations, seems to support 
this concept. 

A number of equations remain unsolved. From 
a mathematical point of view it would be interest-
ing to know which kind of initial and boundary 
conditions produce travelling waves. A relevant 
question from a physical point of view is to ask 
whether a microscopic basis for the phenomenologi-
cal concept can be given. Fröhlich's very simple 
theoretical models may serve as a starting point to 
consider actual biological systems. 

Experimental evidence is now increasing which 
seems to support the theoretical prediction for a 
longitudinal polarization oscillation in the 1011 Hz 
region as well as for the oscillations found in the 
EEG. More refined experimental methods could 
lead to a specification of the parameters of the 
model and to an indication of the parameter regions 
wrhich are of relevance. 
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