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A brief description of the model equations and their underlying physical basis is given. The
space independent problem of a previous paper is extended to include diffusive processes. Trav-
elling wave solutions are introduced, the stability of the steady states and the different bifurca-
tion schemes are discussed. The collapse of the limit cycle, by means of an external stimulation
or by internal constraints as well as the onset of propagating pulses is considered. Phase portraits
are discussed in great detail. Correspondence between some approximated versions of the model
equations and nervous pulse propagation equations is established. Furthermore, some suggestions

for an experimental proof of the model are made.

1. Introduetion

In a recently published paper [1] (henceforth
referred to as I) we have presented some studies on
Frohlich’s brain wave model [2]. The physical basis
of this model is the concept of long range coherence
in biological systems. Starting from the dielectric
properties of biological materials, Frohlich [3] has
shown by a mere application of physical laws that
such systems may be capable of coherent electric
vibrations in the 1011 Hz region. The existence of a
metastable state with a very large electric dipole
moment and long range selective interactions can
lead to a collective enzymatic reaction. This reaction
should take place in the greater membrane of the
brain [4] if supplied with substrate molecules. It can
create a chemical oscillation of parts of the mem-
brane and a corresponding electric oscillation which
is coherent over large regions.

The model has been suggested to explain the
extraordinarily high sensitivity of biological systems
to weak electromagnetic signals. In I we have
studied the set of nonlinear differential equations
which describes the model. The most relevant result
is the existence of a limit cycle (sustained oscillation)
and its collapse when it is exposed to an external
stimulation of sufficient strength. The limit cycle
stores the signal energy until the breakdown
occurs. This reveals the possibility to create a
response signal (i.e. nerve impulse) even though
the energy which is available from the external
stimulation would be too weak to cause this. The
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onset of a response signal necessitates the introduc-
tion of space dependent variables. In order to
describe spatial non-homogeneous solutions (i.e.
propagating pulses) diffusive processes have to be
added to the other processes.

In the present paper we discuss the space depen-
dent problem in some detail. The diffusive processes
are discribed by a simple application of Fick’s law
of diffusion. The prerequisites for the emergence of
spatio-temporal patterns of organization are open
systems, nonlinear kinetics and stabilization of
these patterns sufficiently far away from thermal
equilibrium. Frohlich’s model displays these prop-
erties (vid. I).

The bifurcation of the limit cycle, i.e. the in-
stability of the time-periodic steady state solution
may lead to another solution which is stable in space
and time. These spatio-temporal dissipative struc-
tures [5] can be of various types. In this paper we
shall restrict ourselves to travelling wave solutions.
Other types of solutions (e.g. more complex space-
and time dependent structures, localized structures,
almost periodic solutions, ...) which can branch off
from the homogeneous solution by means of specific
constraints are more difficult to be handled. These
solutions rather depend on the detailed structure
of the boundaries than on the bulk properties.
Work on these subjects has been done in many
branches of natural sciences such as: chemical
reactions, shock waves, fluid dynamics, biological
evolution, ecology and in other fields, e.g. sociology
[24].

An important reason to extend the calculations
of our previous papers [1, 6, 7] is the increasing
experimental work which has been done to test the
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conclusions which have been drawn from Frohlich’s
suggestions. An interpretation of the known
experimental results by means of some simple but
convincing model calculations provides considerable
evidence for Frohlich’s rather speculative sugges-
tions (vid. I).

We start with a brief description of the model
equations and their extension to the nonhomo-
geneous problem. Travelling wave solutions are
then introduced. They allow to transform the set
of nonlinear parabolic differential equations into a
set of ordinary differential equations. Subsequently
we study the stability of the steady states and the
different bifurcation schemes. Special attention is
given to the existence of periodic solutions. The
resulting phase portraits are discussed in great
detail. They show the dynamic behaviour of the
model equations, in particular the different types
of travelling waves that can exist.

Finally we briefly comment on the relations which
exist between nervous pulse propagation equations
and our approximated equations.

2. Limit Cycle and Travelling Waves

In paper I we have studied the steady state
behaviour of the following set of equations

div=y0+adow

+ (e " —d2)y + F, (2.1)

dio=—pv—oadoy. (2.2)

The first two terms on the r.h.s. of both equations
describe the nonlinear collective enzymatic reaction.
The third term of Eq. (2.1) is the “dielectric” term.
It describes the competition between the system’s
tendency to become ferroelectric and inherent
losses due to ‘“‘electrical” resistances. F is the
external stimulation, » and ¢ are the excess con-
centrations of activated enzyme and substrate
molecules respectively beyond their equilibrium
values N=v»+y/aA4 and S=0+ (/e 4). «, f and
y are positive parameters and 4 is the concentration
of unexcited enzyme molecules.

Equations (2.1) and (2.2) exhibit a limit cycle
oscillation if the conditions

By >aAF,
2 —d2>qAF|y,

(2.3)
(2.4)
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and
(2 —d2— aAF[y)2 <4(fy — aAF)

are fulfilled.

In order to look for space dependent solutions a
diffusive process must be incorporated in Egs. (2.1)
and (2.2). We take the axial direction & to be the
only important space dimension and apply Fick’s
law of diffusion. However, we do not add a ‘“‘diffu-
sive”” term in Equation (2.2). On one hand we make
this restriction for mathematical convenience but
also to account for the fact that ¢ partially plays
the role of a pool-variable (i.e. a slow variable in
our case). This has the effect of replacing Eqs. (2.1)
and (2.2) by

v=y0 +adov+ (c2e "’ —d2)w
+ F 4 0z,

0io=—pfv—adoy

(2.5)

(2.6)
2.7)

(the diffusion constant D is incorporated in the
variable z, # = )/ D ).

Assuming the membrane to be of infinite length,
we study Eqgs. (2.6) and (2.7) on the planar quadrant
=0, t =0. Equations (2.6) is classified as a non-
linear parabolic partial differential equation of the
general form

Ozzv = 0+ f(v),

where f(v) is nonlinear. This equation is known to
have travelling wave solutions. Such a behaviour is
not possible if f(») is linear (vid. e.g. the heat
equation). Equation (2.8) is supplemented by a
kinetic equation for the additional variable o. We
expect this addition to give rise to a significant new
behaviour. As stated in the introduction we will
restrict ourselves to travelling wave solutions of
Eqgs. (2.6) and (2.7). A solution of this type only
depends on the variable s =+ @t, where 0 is the
wave velocity ; it plays the role of a parameter here.
We substitute

v=y@+0t) =y,
o=@+ 0t) =)

in Egs. (2.6) and (2.7), respectively.
The transformed equations read

Ody=yp+adypyp+ F
-1 (62‘3_1‘2‘“2 s dz)'l) + assw,

Od%p=—fy—adygp.

(2.8)

(2.9)
(2.10)
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Introducing Ozp = y, the Egs. (2.9) and (2.10) can
be written as a first order system

Osy =%, (2.11)

Uy =0y —yp— (e "V —d2)y—
—adyp —F, (2.12)

O0%p=—fy —adyp (2.13)

with the steady states (equil. points):

Yo
SS1: J@po= — Blad
po=0
and
Po=0
SS2: {gpo=—Fly
Xo=90

We expand the nonlinearities of Eqgs. (2.11) to (2.13)
in a Taylor series around the two steady states. The
linearized equations then determine the stability
of the steady state solution near this critical point
[8]. For the SS 1 we get the characteristic equation

A3 — 22(0 — aAyo|O) + A(c2(1 — 2 "2ye2)
cem MW @2 — B — o Ay)
+adyo(c2(1 — 212ye?)

cem TPVt 2 — B)/O =0 (2.14)
and for the SS 2
B—0O2+ A(c2—d2—aAF[y)
— By —adF)O=0. (2.15)

3. Stability of Steady State 2

The eigenvalues of Eq. (2.15) are real or complex,
depending on the parameters and on the external
stimulation. If the conditions (2.3) and (2.4) are
fulfilled, we have an unstable node (UN) if Eq. (2.15)
has three positive real roots and an unstable focus
(UF) if there is a positive real root and complex
roots with positive real parts. For ¢2—d2 —a A F|
y=0and fy>aAF (ie. c2—d?— f<0) we have
the bifurcation scheme

UF_>SP (3.1)

with
Fe=1y(c?—d?)|sd4
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[under these conditions the critical point is an un-
stable focus, which follows from a calculation of
the discriminant of Equations (2.15)]. For

2—d?—aAFy>0 and fy=adF

(i.e. ¢2—d2— f>0) we have the scheme
UF =3 SP (3.2)

with
Fo = fylad.

If one of the conditions (2.3) or (2.4) or both are
not valid, the real parts of the eigenvalues do not
have the same sign. All these cases exhibit a saddle
point behaviour. The existence of a negative real
eigenvalue together with a complex root with
negative real parts is ruled out by the Hurwitz
criterion [9]. An asymptotically stable steady state
(i.e. stable node or stable focus) does not exist.

If we compare the stability conditions for the
SS 2 of the space independent problem (vid. I) with
those of the space dependent one, we can derive
the following scheme:

stable focus (stable node)
in I - saddle point ,

saddle point in I <« saddle point,

unstable focus (unstable node)
in T < unstable focus.

The saddle point belongs to a one-dimensional
family of solutions which tend to the steady state
for s — + oo (i.e. stable) and to a two-dimensional
family of solutions which tend to the steady state
for s— — oo (i.e. unstable). This holds for

aAF
2 —d?— >0; fy—adF <O
vd
or
aAF
fy —aAF <O0.

2 —dd—— < 0;
i

The reversed situation, i.e. two stable and one un-
stable families of solutions, is given when

o AF
;~ <0; Py —adF>0.

2 — 2 — -
The most interesting problem concerns the limit
cycle oscillation around the unstable focus in the
homogeneous case. This sustained oscillation can
only exist if at least the conditions (2.3) and (2.4)
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are valid. We apply a generalized Hopf bifurcation
theorem [9] to Equation (2.15). This equation has
two simple, complex conjugate nonzero eigenvalues
A172. They cross the imaginary axis if

a A Fely = (By — O2(c2 — d?))/(y — ©?).

(3.3)

Furthermore we can calculate the ‘“‘speed” with
which A; and s bifurcate:

Oaar/y Re(d1y2) |p=r. = 3 (y2 — @)/

“((c2—d2—B)y — 6603 (y — 6?)). (34)
For the real root one gets l3=60>0. For y =6
the conditions of the generalized Hopf bifurcation
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Fig. 1. Stability of steady state 2 (SS 2) in dependence of
the external stimulation F' and of the travelling wave
velocity 0 The solid line represents condition (3.3), 6 =g/
(c2—d?). The 4+ and — sign correspond to a positive and
a negative eigenvalue, respectively; : or = refer to the
sign of the real part of a complex eigenvalue. (SP = saddle
point, UF = unstable focus.)

a) c2—d2—B<0; b)c2—d2—p8>0.
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theorem are fulfilled, i.e. periodic solutions do exist.
The existence of only one positive real root follows
from a calculation of the so-called Sturm’s func-
tions. For

02y < B(c2 — d2)1 (3.5)

there exists a region where the steady state solution
is a saddle point. If we restrict ourselves to the
most promising transition in the space-independent
case [vid. Equation (I, 4.13)]:

UF—}—SLC?SF (3.6)
we find from condition (2.4) and Eq. (3.3)
2y =1. (3.7)

We thus have a lower limit for the velocity of the
travelling wave

Qmin = VV .

An analysis of the phase plane shows that there
are no nonconstant bounded solutions, if the criti-
cal point is a saddle point. Accordingly, no stable
travelling wave solutions can exist. The situation,
where SS 2 is an unstable focus which is surrounded
by a limit cycle, will be discussed in more detail
after having studied the SS 1. A graphic represen-
tation of the conditions (3.3) is given in Figure 1.

4. Stability of Steady State 1

The critical value yy is calculated from G (yo, F)
= 0, with

G(yo, F) = (c2e~ """ —d2 — B)yo
— Bylad + F.
This equation has one real solution for
2—d2—f<0

(4.1)

and three roots in the opposite case.
The characteristic equation [Eq. (2.14)] can be
separated in two parts:

= —ady/0O, (4.2)
2 — 0O+ c2(1 —212ye?)
sV @2 — B=0. (4.3)
The latter equation is rewritten in the form
A2— 0L — (Oryo) = (4.4)

with Op o derived from Equation (4.1). It allows a
geometrical interpretation of the stability behaviour
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since the sign of Op yo can be taken from the yo — F'-
diagram (vid. Figure 2). We get critical points of
different types. Both, for po<<0 (i.e. 4;>0),
OF wo >0, and for o > 0 (i.e. 21 <0), Op o= 0 the
critical points are of saddle point type. wo<<O,
Or wo < lead to a unstable focus or an unstable
node. The additional condition for the steady state
to be a focus is @2+ 4(0p o)1 <0. No asymp-
totically stable solutions can exist. This follows
from the Hurwitz criterion [9]. The correlation
which exists between the homogeneous and inhomo-
geneous case is the same as for steady state 2. Both
results are drawn in Figure 2.

A Dbifurcation to a periodic solution is not pos-
sible, since the necessary conditions of a generalized
Hopf bifurcation theorem are not fulfilled. The

Ato

| N

/

/2' 53
: !
/ ; XAF/T
f 5P| -
o F F

T

b

Fig. 2. Steady state solutions of Egs. (2.9) and (2.10):

a) c2—d2—f<0; b)c2—d2—4>0.

(SP = saddle point, SLC = stable limit cycle, UF = un-
stable focus, UN = unstable node.)
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necessary condition for two purely imaginary roots
reads

O (xAyo + (OF yo)™1) = (x A po)?. (4.5)

This is the same form as Eq. (4.4) if one replaces
a Ay by @A. Hence the solutions of Eq. (4.5) and
of Eq. (4.4) are not independent from each other, i.e.

(xAwo)1, 2= 0l2,3.

But since the eigenvalues 45 3 are purely imaginary,
wo also has to ke purely imaginary. However, an
imaginary steady state solution g is not relevant.
The complete stability behaviour of the steady
states 1 and 2 is shown in Figure 3.

As seen, the region where an unstable node or an
unstable focus exists is rather restricted. Further-

T’to

Fig. 3. Steady state solutions yg as a function of the ex-
ternal and internal parameters. The folded surface repre-
sents SS 1 and the plane one SS 2 (same notation as in
Fig. 2), Oy > B/(c? — d?2).

more, only for SS 2 periodic solutions exist. How-
ever, a further analysis is required to determine the
stability of the periodic solution and the direction
of bifurcation. The theory of one-parameter trans-
formation groups seems to be an appropriate and
possible method [10].

5. Phase Portrait

The phase portrait of Egs. (2.11) to (2.13) changes
qualitatively when relevant parameter values cross
the locus of bifurcation in their parameter space.
Since these loci are known, we can discuss in prin-
ciple the complete phase portraits for any value of
external constraints. This analysis exhibits the pos-
sible kinds of travelling waves.
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Unfortunately the phase space of our dynamic
system is three dimensional. In order to keep the
investigations in a reasonable limit and for the
clarity of the portraits we confine ourselves to an
analysis in two dimensions, i.e. in the phase plane.
This has the effect that one studies a system of
lower dimension which now depends on an addi-
tional parameter ¢ =¢@.. We restrict ourselves to
the y—w-plane. This limitation seems to be
reasonable since the variable ¢ is a slow variable
and plays the role of a pool-variable (¢.). However,
we must be aware that only for g.=g@o= — /a4
(i.e. SS 1) we have 0s¢ =0. Then all the trajectories
lie entirely in the y—v-plane. For ¢c==—f/ad
the trajectories have a component in the ¢-direction.
A similar consideration has been undertaken in I,
where we have discussed the “energy-function”.

We now discuss the phase portrait in more
detail [vid. Egs. (2.11) to (2.13)]

Osp =2,
Oy =0y —f(y)
with
fy) = (2T —d2)p

(5.1)
(5.2)

Fadpey +yee+ F. (5.3)
The slope of the trajectories
dyy = 27HO x — f() (5.4)
and of the separatrices [11]
mi2 = 3(0 £ (02 — 4 3y f(p)|,=y,)'/?) (5.5)

yields the essential features of the phase plane
portraits. The critical points are given as the points
of the intersection of y =0 and f(y)=0.

I ge=—Fly
The nonlinear function f(y),

fp)=(2e ™V —d2 —y-1adF)y  (5.6)

simulates the existence of three steady states. But
only for po=0 we have Jsp=0. Then the two
quasi-steady states are (vid. Fig. 4)

1 c2

T2 @ adl)y B

Yo? =

which, since yy is real, yields c¢2 > d2 4 o AF/y. Then
a bounded solution exists.

423

Axl-fﬁrl

_4_____x:______$__

i
__?______ \K____#_

Fig. 4. Phase plain for SS 2. The arrows indicate the slope
and the direction of the trajectories; 0,y = oo for y = 0.
f(y) = 0 yields the SS 2 and the two quasi steady states.

2. pc=—Plad
The nonlinear function f(y), which is given by
flw) = (c2e "V —d2 — By — Bylad + F (5.8)

is neither an even nor an odd function of y (vid.
Figure 5). The phase portrait for ©® =0 is drawn
in Figure 6.

A closed orbit corresponds to a standing pulse
(vid. Fig. 6¢), a loop to a standing periodic wave

A-FL%)

C

(

Fig. 5. Function f(y) (vid. Eq. (5.8)) in dependence of the
external stimulation F for ¢2 —d2 — > 0.

1.0 =F < Fq,

2. Fi<F < F,,

3. F = Fy— fyjad,

4. Fo<F < F3,

5. F3< F,

f(y) =0 are the SS 1.
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7

&, i

Fig. 6. Phase plain diagrams of SS 1 if ¢2—d2— >0 and
0 = 0+. The singular points y; and y3 are saddle points,
ye is an unstable focus (UF) in case b and d and a centre (C)
in case c. The 4+ and — signs refer to a positive and a
negative slope of the trajectories. Figures a to e correspond
to the graphs 1 to 5 of Fig. 5, respectively.

(vid. Figure 6b,d). The stability of the loop
reflects the stability of the standing periodic wave
in this loop [12]. For both cases (i.e. Fig. 6b, d)
we have orbital stability for the standing periodic
wave. This behaviour results from the fact that for
O=0 Eqgs.(5.1) and (5.2) form a Hamiltonian
system with

Fr. Kaiser + Limit Cycle Collapse and Travelling Waves

c2e~I"v*

H(yg,9)=3%x*—

e (5.9)

—%wz(d2+ﬂ)~w(%—ﬁ’>.

It should be stressed that, in the yp — y-plane, the
internal steady state of the triplet is an unstable
node or an unstable focus, i.e. the eigenvalues are
positive. If, in addition, the time dependence of ¢
is taken into account, the additional eigenvalue is
negative for gy >0 and positive for o <0. Thus,
in three dimensions we have for yo>0 a saddle
point behaviour, whereas for yo<<0 the steady
state is an unstable focus (vid. Figure 2). A saddle
point type of behaviour is not possible in the two
dimensional case (vid. Figure 6). Such a different
behaviour in the two and three dimensional case
is a typical one. A critical point that seems absolute-
ly unstable in three dimensions can exhibit a rather
different behaviour if it is not only analyzed as an
isolated singular point. Examples for this behaviour
are homoclinic and heteroclinic orbits. In the latter
case at least one additional critical point must
exist.

For © =0, i.e. the travelling wave case, the
position of the steady states is not changed against
the situation @& =0. However, the slope of the
trajectories and of the separatrices is altered, and
thus the stability behaviour depends on 6. The
direction of these changes is determined by Eqgs.
(5.4) and (5.5), e.g. a positive slope of the sepa-
ratrices increases and vice versa.

The transition from the single to the triple
steady state 1 with increasing F is influenced by
the periodic oscillation around the steady state 2.
Details are only obvious if the phase plane portrait
in three dimensions is considered. The threefold
steady state which is defined by

{10 =0,w0,1 < wo,2 < 0,3, 0= — flad},

exhibits only a periodic oscillation around g, 2 with
wo,1 and o, 3 in the exterior of the cycle. This has
been shown by simple phase plane arguments. For
O 40 Eqgs. (5.1) and (5.2) constitute no longer a
Hamiltonian system. The Hamilton function
H (y, x) of Eq. (5.9) must be supplemented by an
additional term R, which is inprinciple unknown.
The dynamic behaviour for @ being small is shown
in Figure 7. The trajectories, which start at the
same critical points for @ =0 and @ =0, differ in
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\ X

Fig. 7. Phase plain diagram of SS 1 for fy/ad = F (vid.
Figures 6¢). The dashed lines show the changes in the slope
of the trajectories for O == 0.

their paths. Closed paths of the Hamiltonian system
are opened, it is said that H ‘““increases on orbits”.
This increase corresponds to a negative friction, a
behaviour which becomes obvious if the two first
order Egs. (5.1) and (5.2) are written as a second
order differential equation. It reads

Ossp — O 0y + f(y) = 0.

The influence of @ on the complete phase portrait
is shown in Fig. 8 for y f/a 4 > F.

(5.10)

6. Discussion of the Phase Portraits

The idea of the collapse of the limit cycle
oscillation and a subsequent onset of propagating
pulses has been the starting point of the present
work. Therefore we restrict ourselves to a discussion
of the phase portraits for fyjad > F. The other
case, By/aAd < F, does not show any stable oscillat-
ing or nonoscillating solutions.

A travelling wave (y(s), @(s), x(s)) is a non-
constant solution of Egs. (2.9) and (2.10). The
critical points (i.e. steady states) of Egs. (2.11) to
(2.13) are the identical constant solutions. A periodic
solution of the latter equations corresponds to a
periodic travelling wave of Egs. (2.9) and (2.10).
Travelling waves can be roughly classified into three
groups: periodic waves — solitary waves and
transition waves.

The most interesting problem for our purpose is
the response of the system to an external stimulation
which exceeds its critical value F¢. This response
may create a pulse travelling along the membrane.
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The answer to this problem generally relies on a
solution of the partial differential equations (Egs.

(2.9) and (2.10)). It should include the type, shape,

p 2
Fig. 8. Phase plain diagram of SS 1 for F, <F < F3 for

’&4 'SP }3’SP

different values of wave velocity @ if ¢2—

a) O =0 (vid. Fig. 6b);

b) to d) correspond to increasing values of ©. The dashed
lines (----- ) represent dsy =0; for y =0 we will have
dsy =0 (same notation as in Figs. 2 and 6).

—p>0.
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velocity and stability of the travelling wave. A
complete mathematical formulation leads to a
boundary value problem with data given at a =x
and specified for all times together with an appro-
priate initial stimulus at ¢=0. This combined
boundary and initial value problem can only be
solved in a numerical way. There the temporal and
the spatial stability are determined by the initial
and the boundary value problem, respectively.

Up to now we have not succeeded in solving the
complete problem. Hence we will restrict ourselves
to results which one can deduce from a phase plane
analysis. The trajectories describe the shape of the
travelling front from one singular point to another
one.

a) Unique steady state 1

We start with a discussion of the results which
we have found for ¢2—d2— <0, i.e. if the SS 1
is a single one. We may represent this case by the
scheme (vid. Table 1).

It is rather instructive to have a closer look at
the region Fa F.. The limit cycle collapse at
F — F. coincides with the breakdown of the limit
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cycle in the space independent problem: Con-
sequently we have the bifurcation schemes:

space independent problem

stable oscillating solution - .~ stable nonoscil-

F:
lating solution,

space dependent problem

§table oscillati.ng solution ;. propagating pulse
in space and time.

The energy which is stored in the limit cycle
oscillation by chemical reactions and external
stimulation, is transferred into the propagating
signal. The critical value for the external stimulation
is

Fo=y(c—d2)ad . (6.1)

We note that this is determined by the parameters
of the kinetic equations (Egs. (2.1) and (2.2)).
ylaA=Ny stems from the substrate-enzyme
reaction. Ny is that part of the excited enzyme
concentration whose dipole moment is screened by
the surrounding water molecules and ions and which
therefore does not contribute to the ferroelectric

c2—-d2—/3 <0

L O£F<Fc II Fc <F <F) III F>F,
\U/ \U’ \U, Table. 1. Bifurcationscheme
= for the single SS 1 (i.e. ¢?
A
ss1 : % i F=F point 1 /[y > p/(c?—d?). Tra-
podnt e ES 2 jectories which start from
the unstable saddle point
. and the unstable focus, ap-
‘ travelling stable. T shape . proach the stable limit
Vv front travelling | preserving cycle with velocity @. The
front | |travelling shape (;)f tr}:iese tra;;elling
| front fronts depends on the pa-
st.ab.le | rameters of the system. For
limit increasing external stimu-
cycle \ lation F (F > F,) there are
/ Ttravelling \| saddle — BRIk bifurcations to other steaﬁiy
Ss2 ; F=F point states, thus creating other
\ front point . types of travelling waves.
bl The most important regions
unstable F= Fg are those with F < F. and
focus F.< F < Fs with the limit
cycle collapse at F — F,

(vid. Figure 2). F, =y
(62 =2 (l"‘)/lA, F2 = ﬂy/aA
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behaviour (vid. I). Its value increases if there is a
large input of substrate molecules e.g. through
autocatalytic production or if there is a small
concentration of weak polar enzyme molecules (A).
o represents the strength of the nonlinear enzyme-
substrate reaction. For increasing strength we have
a decreasing concentration of screened excited
enzyme molecules, No. Small values of Ny in turn
reduce the threshold value F. for the external
stimulation to achieve the limit cycle collapse. The
second essential parameter which determines F is
c2—d2. This term represents the competition
between the ferroelectric tendencies of the un-
screened part of the highly polar enzyme molecules
and the dielectric losses. A large sensitivity of the
biological system to external stimulation requires
a small critical value F, which can be achieved
by small values either of Ny or of ¢2—d2. The last
condition requires a soft ferroelectric material
which seems to be present in biological systems.
Furthermore, since ¢2—d2<f is required, we
should have a large decay rate [ for the excited
enzyme molecules. This means that the chemical
damping should dominate over the dielectric terms
(e.g. over the ferroelectric tendencies). Since the
collapse of the limit cycle is determined by all
parameters of the kinetic equations there is a wide
variability for experimental investigations, whence
it should not be too difficult to decide whether the
model may serve as a starting point to describe the
function of the Greater Membrane.

Above F., a detailed discussion with respect to
the existence of a homoclinic or heteroclinic orbit
is necessary. Only then the form of the pulse which
propagates along the membrane can be given.
However, we may state that there is a bifurcation
to a saddle point which contains two stable and one
unstable family of solutions. This Lehaviour is
valid in the region F.< F < Fs and one can show
that the travelling wave has a shape preserving
tendency when it propagates.

The critical value F, of the external stimulation
has a certain value for fixed internal parameters.
However, changes of these parameters by internal
or external means may lead to a sequence of several
critical values F.. Large values of F, may thus
perhaps play the role of the threshold which is
known from nerve excitation. This behaviour
seems to manifest the close connection which
exists between brain waves (i.e. electroencephalo-
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graphic oscillation) nad nerve action [21]. Further-
more, the existence of different types of travelling
and standing waves indicates that there are changes
in both, the amplitude and frequency of the brain
wave oscillations, if F. is changed. The emergence
of spatial and spatio-temporal behaviour by means
of the bifurcation of the homogeneous state at F
can thus be caused by ecritical changes of the
internal parameters. It seems possible that F is
lowered to a value which is comparable with
always existing internal fields. Without an external
stimulation dramatic changes of behaviour may
then occur. The resulting internally caused in-
stabilities may give rise to a collapse of the limit
cycle oscillation. Quite new phenomena may result,
e.g. an elliptic seizure. The latter is a coherent
oscillation with a large amplitude which may be
seen by electroencephalographic activity [22].
A more detailed investigation of this problem which
should include the correlation between individual
units of nerve cells in the brain and the EEG
activity, is beyond the scope of this work.

b) Threefold steady state 1

The situation with ¢2—d2— >0, where the
SS 1 is a threefold one, is more complicated. We
can draw the scheme (vid. Table 2):

For ©® =0 we have a complete separation of the
phase space for the SS1 from that of the SS 2.
Besides one looses the time dependence of the
variables , ¥ and ¢. We do not want to discuss
this situation in more detail. Different types of
travelling waves between the split SS1 solutions
are shown in Figure 9. A possible type of transitions
from SS1 to SS 2 is drawn in Figure 10. A more
detailed phase analysis which includes y —¢ and
@ — s diagrams and the different types of transitions
from SS 1 to SS 2 is postponed to a later study.

For F > F3 no stable space dependent solution
exists. The behaviour of the system is the same as
that for ¢2—d2<f. A pulse propagates from the
region where the stable limit cycle has collapsed.
After a recreation period, the limit cycle can be
built up again. Details of these processes require a
complete calculation of the whole dynamic be-
haviour of the system. This should include the size
of the reacting (i.e. oscillating) and of the pulse
propagating regions of the Greater Membrane and
is beyond the scope of the present paper. Finally
it should be stressed that the limit cycle which
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Table 2. Bifurcation scheme
for the threefold SS 1 (i.e.
¢2—d2— f>0) and the
2 2 SS 2, if ©2/y> B/cz—d?).
c’-a"-#>0 There are four different reg-
ions of behaviour (vid. Fig-
ure2): F< F1,F1 <F <Fo,
Fo<F<F3 and F3<PF.
I O<F<KF The behaviour of region I
1|IT F1<F<Fy | IIT Fp<F<F3| IV F >F3 corresponds to that of region
‘U’ I in Table 1. In region II
U ‘U/ ‘U’ there are trajectories which
connect singular solutions
sp ? se |7 sp of $S 1 (vid. Fig. 9¢) or the
imit cycle o . Regions
Yy 2 ¥ 3 limit cycle of SS 2. Reg
3 2 I and IV lead to different
fig.9c TtransitiOn travelling waves, the details
wave of which are unknown.
—>
881 —— SP F) UF A
¥, 1, .
fig.scltransition |
21 Liids complétely
sa e |
— —
point F1q SP F2 SP unstable
Yy Yy :
travelling [travelling |
|
front front
Vi
stable
limit || 2> || sLC
/ cycle 1
Ss2 Ttravelling Ttravel' Fy SP ;—) sp
front front 3
unstable /
—
focus Fq UF

represents a stable oscillation in space and time,
may be viewed as a standing periodic wave. The
existence of the limit cycle is related with the
condition

Oy > p(c* — d?)

which follows from Equation (3.3). This restriction
seems plausible since a travelling wave can only
exist if its velocity is large enough to overcompen-
sate the diffusion. Furthermore, the diffusion
constant D is incorporated in @, since the real
travelling wave speed is @ = /D o.

(6.2)

7. Approximations

We will briefly comment on the relations which
exist between nervous pulse propagation equations

and our equations, if the latter are simplified. The
nonlinear term o Aoy of Eq.(2.1) is neglected,
whereas the nonlinearity of Eq. (2.2) is replaced by
— ¢o. This approximation is an appropriate one
for small values of » and ¢ and for a4 <y, f3,
c2—d?. The same approximations have been
performed in I, where they turned out to exhibit a
rather good description of the steady state be-
haviour. Furthermore, we expand the exponential
of Equation (2.1). Then we end up with a Bonhoefer-
Van der Pol/Fitz-Hugh system, which has been
discussed in I (vid. Egs. (I 5.6) and (I 5.7)). In the
space dependent case these equations read

O =7,
Gy =01 —yp—(2—d)y
+e2l2y2—F,
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a s=x+9t’
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¥,
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L
b s=x+6t
-
AN,
2
ot \ == )
c s=x+6t

Fig. 9. Travelling waves within SS 1 for different values of

0 (01 < 62 < 63).

a) For O; an oscillating nonconstant solution unwinds from
the unstable focus w2 and tends to 3 (vid. Figures 8b);

b) for @z there is a transition from 3 to y; (transition
wave) and an oscillating transition from y2 to w3 (vid.
Figure 8c);

c) for O3 we have an upward transition from y2 to y3 and
a downward one from s to y; (vid. Figure 8d).

ot ¥
A

9;

>_
s=x+06t

Fi g. 10. Transition wave from SS 1 (g1 = — B/xA4) to SS 2
(92 = — F/y) for 0 < F < Fo.
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O%p=—fy—cgp. (7.3)
The steady state for these equations is given by
SS 3: X()ZO, Qo = — (ﬂ/{;‘)l])o
where g is the solution of
po(c2 —d* — fyle) — [2c2ye® + F =0. (74)
It is a single (¢2—d2 — fy/e <0) or a threefold one
(2 —d2— Byle>0).
The stability of the steady state is calculated
from
A3 —22(0 — ¢/O) — A(e — Byle+ (Orp)Y)
— ¢/O(0py) 1 =0, (7.5)
where 0pyp can be derived from Equation (7.4). The
results are drawn in Figure 11.

oYy

UF

SP
o

I
I
I
I
|
I
|
|
|
|
|
|
!

|

|

' -
JERNE /3376 Ldte

2.2,2

b 3T
Fig. 11. Stability of SS 3 (Egs. (7 1) to (7.3)) in dependence
of the steady state solution yo and of the travelling wave
velocity © The solid line represents the condition (3.3), if
the latter is applied to the approximated equations.
a) ¢ —d2— fyle <0; b) c2—d2— fv/e>0,
there is one steady state wo.; (1 = 1, 2, 3) in each of the
three regions (I, II, III).
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Equations (7.1) to (7.3) have the same structure
as the wellknown Fitz-Hugh-Nagumo equations
[14]. These equations have been established to give
a simpler description of the Hodgkin-Huxley
equations [15]. The latter describe a model for the
“propagated action potential”, in which a signal is
created by means of an external stimulation and
moves along the axon without loss of its waveform.

The behaviour of the Fitz-Hugh-Nagumo equa-
tions has been investigated by many authors. Since
these equations are so closely related to our own
ones, it is worth citing those results which also apply
to our system.

Hasting [16] proofs the existence of homoclinic
orbits for ©® = @, O3 and the possibility of periodic
travelling waves for @1 <6 <Oy. Single pulses
and periodic travelling waves can exist, if a more
generalized system is considered (Rinzel [17]).
Spatial and temporal stability has been discussed
[17, 20] as well as the necessary conditions for the
threshold and the onset of pulses. A rather detailed
calculation which includes the direction of bifurca-
tion and the existence of periodic solutions has been
given for the space independent problem in [19, 23].

The results of these articles are applicable to the
Equations (7.1) to (7.3). But, without a detailed
calculation of the whole time and space dependent
problem, including the boundaries of the membrane
system, it is not possible to decide which one of the
solutions is relevant. However, since our results
exhibit pulse propagation, single and repeated
pulses (wave trains) and threshold behaviour, which
is wanted for biological ystems, our equations may
be expected to have significance for biological
purposes.

Conclusion

The brain wave model has been suggested by
Frohlich in order to give an explanation of the
extraordinary high sensitivity of certain biological
systems to weak electromagnetic waves. This
experimental result seems to be in an appreciable
agreement with our results.

The resting state of the nonlinear system has
turned out to ke an oscillating one (i.e. a limit
cycle). External electrical or chemical constraints
can cause this limit cycle to collapse. The results
reported here show that after the breakdown
propagating pulses are created. Depending on the
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internal parameters of the system on one hand, and
on the external stimulation on the other hand,
several types of travelling waves are possible. Their
speed, waveform and stability are governed both,
by the size of the membrane system itself and the
internal parameters.

The extreme low frequency oscillations (10 Hz
region) thus make the Greater Membrane respond
to very weak signals. Furthermore, this oscillating
resting state rather than a static (nonoscillating)
one, forms the nonequilibrium energy source for
the onset of propagating pulses. The entire brain
wave model is based on a state far from thermal
equilibrium. The latter is stabilized by the long
range coherent behaviour of the substrate-enzyme
system. From this point of view it is rather obvious
that there are relations between neuronal activities
(i.e. nerve pulses) and brain waves (i.e. low
frequency oscillations) [21]. The close connection
which exists at least for the approximated brain
wave equations and the Fitz-Hugh Bonhoeffer and
Fitz-Hugh Nagumo equations, seems to support
this concept.

A number of equations remain unsolved. From
a mathematical point of view it would be interest-
ing to know which kind of initial and boundary
conditions produce travelling waves. A relevant
question from a physical point of view is to ask
whether a microscopic basis for the phenomenologi-
cal concept can be given. Frohlich’s very simple
theoretical models may serve as a starting point to
consider actual biological systems.

Experimental evidence is now increasing which
seems to support the theoretical prediction for a
longitudinal polarization oscillation in the 1011 Hz
region as well as for the oscillations found in the
EEG. More refined experimental methods could
lead to a specification of the parameters of the
model and to an indication of the parameter regions
which are of relevance.
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